1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
| #include <Windows.h> #include <fstream> #include <iostream> #include <iomanip>
const int THREADS = 8; const int N = 1024; const int DATA_SIZE = N / THREADS; const char* MATRIX_A_FILE = "M1024A.txt"; const char* MATRIX_B_FILE = "M1024B.txt"; const char* RESULT_FILE = "1927405160.txt";
double matrix_a[N][N]; double matrix_b[N][N]; double result[N][N];
struct THR_FUNC_PARAM { int a_start; int a_end; int b_start; int b_end; };
DWORD thr_func_calc(LPVOID IpParam) { THR_FUNC_PARAM* pmd = (THR_FUNC_PARAM*) IpParam; int i, j, k; for (i = pmd->a_start; i < pmd->a_end; ++i) { for (j = pmd->b_start; j < pmd->b_end; ++j) { result[i][j] = 0; for (k = 0; k < N; ++k) { result[i][j] += matrix_a[i][k] * matrix_b[j][k]; } } } return 0; }
DWORD thr_read_matrix_A() { int i, j; double number; std::ifstream fin(MATRIX_A_FILE); if (!fin.is_open()) { std::cerr << "can't read file:" << MATRIX_A_FILE << '\n'; return 1; } for (i = 0; i < N; ++i) { for (j = 0; j < N; ++j) { fin >> number; matrix_a[i][j] = number; } } fin.close(); return 0; }
DWORD thr_read_matrix_B() { int i, j; double number; std::ifstream fin(MATRIX_B_FILE); if (!fin.is_open()) { std::cerr << "can't read file:" << MATRIX_B_FILE << '\n'; return 1; } for (i = 0; i < N; ++i) { for (j = 0; j < N; ++j) { fin >> number; matrix_b[j][i] = number; } } fin.close(); return 0; }
int write_matrix(const char* file_name, double matrix[N][N]) { int i, j; std::ofstream out(file_name, std::ios::out); if (!out.is_open()) { std::cerr << "can't write file:" << file_name << '\n'; return 1; } out << std::setiosflags(std::ios::fixed); for (i = 0; i < N; ++i) { for (j = 0; j < N; ++j) { out << matrix[i][j] << ' '; } out << '\n'; } out.close(); return 0; }
int read_matrix() { HANDLE hThread[2]; hThread[0] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)thr_read_matrix_A, NULL, 0, NULL); hThread[1] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)thr_read_matrix_B, NULL, 0, NULL);; WaitForMultipleObjects(2, hThread, TRUE, INFINITE); return 0; }
THR_FUNC_PARAM params[THREADS];
int main() { std::ios::sync_with_stdio(false); int i, start, end; read_matrix();
HANDLE threads[THREADS]; for (i = 0; i < THREADS / 2; ++i) { start = i * DATA_SIZE * 2; end = (i + 1) * DATA_SIZE * 2; params[2 * i].a_start = start; params[2 * i].a_end = end; params[2 * i].b_start = 0; params[2 * i].b_end = N / 2; params[2 * i + 1].a_start = start; params[2 * i + 1].a_end = end; params[2 * i + 1].b_start = N / 2; params[2 * i + 1].b_end = N; threads[2 * i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)thr_func_calc, ¶ms[2 * i], 0, NULL); threads[2 * i + 1] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)thr_func_calc, ¶ms[2 * i + 1], 0, NULL); }
WaitForMultipleObjects(THREADS, threads, TRUE, INFINITE);
write_matrix(RESULT_FILE, result); return 0; }
|