本质:联邦学习本质上是一种分布式机器学习技术,或机器学习框架。
目标:联邦学习的目标是在保证数据隐私安全及合法合规的基础上,实现共同建模,提升AI模型的效果。
前身:联邦学习最早在 2016 年由谷歌提出,原本用于解决安卓手机终端用户在本地更新模型的问题;
About this Post
This post is written by Holger, licensed under CC BY-NC 4.0.
本质:联邦学习本质上是一种分布式机器学习技术,或机器学习框架。
目标:联邦学习的目标是在保证数据隐私安全及合法合规的基础上,实现共同建模,提升AI模型的效果。
前身:联邦学习最早在 2016 年由谷歌提出,原本用于解决安卓手机终端用户在本地更新模型的问题;
This post is written by Holger, licensed under CC BY-NC 4.0.